На заглавную страницу Сделать закладку
на сайт

Rambler's Top100 Service (В Netscape
нажмите Ctrl-D)

"Культура Тела"

Новости
Обзоры выпусков
Обратная связь
Реклама

 
На сайт Федерации






"Токсины усталости" и их нейтрализация в организме

Юрий Буланов



   Отчего человек устает на тренировке? Почему к концу тренировки иногда появляются вялость, заторможенность, нежелание заниматься? Все это происходит в основном в результате накопления в крови так называемых "токсинов усталости".

       "Токсины усталости" - понятие собирательное. В медицине под "токсином усталости" подразумевают целую группу веществ, которые являются промежуточными или побочными продуктами обмена. Эти вещества образуются в организме как результат интенсивной и продолжительной работы. В первую очередь это молочная пировиноградная кислоты - побочные продукты окисления глюкозы и гликогена в организме. В норме при кислородном окислении глюкозы и гликогена они окисляются до углекислоты газа и воды. При больших физических нагрузках потребность организма в кислороде превышает возможности дыхательной, сердечно-сосудистой и кровеносной систем удовлетворить эту потребность. В результате все энергетические субстраты окисляются не полностью. Часть углеводов окисляется только до молочной и пировиноградной кислоты. Причем увеличение в крови содержания молочной кислоты блокирует кровяные системы транспорта кислорода и затрудняет проникновения его в клетки. Возникает замкнутый круг: чем меньше кислорода, тем больше молочной кислоты, а чем больше молочной кислоты, тем меньше ткани усваивают кислорода. Утомление при этом нарастает как снежный ком. Кривая нарастания утомления становится круче к концу тренировки (утомление нарастает быстрее). Организм стремится защитить себя от недостатка кислорода за счет активизации бескислородного окисления. В мышцах, например, бескислородное окисление может увеличиться в 1000 раз по сравнению с исходным уровнем. Если перед тренировкой доля бескислородного окисления не превышает 15 % всех окислительных процессов, то в хорошо тренированном организме при больших физических нагрузках эта доля может достигать 50%. Однако, при бескислородном окислении как глюкоза, так и гликоген окисляются только до стадии молочной и пировиноградной кислот и концентрация молочной кислоты в крови еще больше нарастает.

       При возникновении даже небольшого углеводного дефицита организм начинает интенсивно окислять жирные кислоты и глицерин. Уже через 15-20 минут тренировки механизм окисления жирных кислот начинает работать в полную силу. Жирные кислоты никогда не окисляются полностью при дефиците глюкозы. Окисление происходит только до стадии кетоновых тел ( ацетон, ацетоноуксусная кислота, В-оксимасляная кислота, ацетоуксусная и ацетомасляная кислоты и т.д.)

       Все кетоновые тела имеют кислую реакцию. Молочная и пировиноградные кислоты сдвигают рН крови в кислую сторону. Развивается так называемый оцидоз. Ведушая роль в развитии ацидоза принадлежит молочной кислоте. Именно молочная кислота является основным "токсином усталости". Сонливость и заторможенность после больших объемных тренировок вызваны прежде всего молочнокислым ацидозом, который вызывает торможение в ЦНС и периферических нервных центрах. Тяжесть в голове и чувство интеллектуального утомления, которые бывают после длительной умственной работы, вызываются в основном накоплением молочной кислоты в ткани головного мозга. Естественно, что любые меры по ликвидации (утилизации) молочной кислоты в печени и мышцах будут способствовать повышению работоспособности и ликвидации утомления.

       В развитие утомления вносят свой вклад также процессы брожения и гниения в кишечнике в результате неполного переваривания пищи. Это может быть вызвано неправильным режимом питания (смешанное питание), неправильным рационом (употребления трудноперевариваемой пищи), заболеваниями желудочно-кишечного тракта (гастриты, язвенная болезнь), да и просто ререеданием. Продукты гниения и брожения непрерывно всасываются в кровь и создают постоянный источник интоксикации в организме. В первую очередь от этого страдает ЦНС, как наиболее чувствительная часть организма и, естественно это вносит свой вклад в общее развитие утомления.

       Белковый обмен также вносит свой вклад в интоксикацию организма. При этом токсинами являются различные азотистые соединения, и в первую очередь аммиак, которые образуются в процессе аминокислотного обмена. Если учесть, что многие спортсмены, особенно культуристы, вынуждены потреблять большое количество белковой пищи, то становится понятно, что фон азотистой интоксикации у таких лиц явно завышен. Особенно сильную азотистую интоксикацию дает мясо, за ним следуют птица, рыба, молочные продукты, яйца.

       При интенсивных физических нагрузках в организме образуется большое число высокотоксичных свободных радикалов: оксидов, гидроксидов и перекисей. Эти соединения химически очень агрессивны. Они способны повреждать клеточные мембраны и вызывать самые различные нарушения жизнедеятельности организма. Естественно, что работоспособность при этом также снижается.

       Свободные радикалы являются побочными продуктами кислородного окисления. В малых количествах свободные радикалы нужны организму, т.к. оказывают регулирующее воздействие на синтез некоторых биологически активных соединений. В больших же количествах они оказывают повреждающее воздействие на клетки. Контактируя со свободными жирными кислотами в крови, свободные радикалы вызывают образование свободнорадикальных жирнокислотных соединений, а токсичность последних бывает на порядок выше, чем у исходных свободных радикалов. В результате может возникнуть выраженный энергетический дефицит и значительное снижение работоспособности.

       У людей с большим количеством подкожной жировой клетчатки содержание в крови жирных кислот повышается ( оно прямо пропорционально количеству подкожного и "внутриорганного" жира). Для таких людей свободные радикалы особенно токсичны, так как вызывают образование большого количества жирнокислотных свободных радикалов.

       Итак, мы выделили 5 основных групп токсинов усталости:
1.Молочная и пировиноградная кислоты.
2.Кетоновые тела (ацетон и др. )
3.Продукты гниения и брожения в кишечнике.
4.Продукты азотистого обмена ( аммиак и др.)
5.Свободные радикалы

       Помимо негативного влияния на работоспособность, токсины усталости вносят свой вклад в формирование возрастной патологии. Они вызывают более быстрое старение организма. Вот почему борьба с токсинами усталости является задачей не только для спортивных врачей, но и для клиницистов.

       Естественно, что образование такого большого количества токсичных веществ в организме не могло не привести к эволюционному формированию в организме мощных антитоксических систем, которые преобразуют, связывают и выводят из организма большую их часть.

       Основное количество токсических веществ выводится из организма через кишечник и почки, но при этом почти все они проходят "обработку" в печени. Любая помощь организму по выведению токсинов усталости сразу же положительно сказывается как на общей, так и на спортивной работоспособности.

       Рассмотрим обезвреживание различных токсических веществ по порядку.

       1.Молочная и пировиноградная кислоты.

       В организме существует механизм поддержания и повышения работоспособности, который носит название глюконеогенеза ( буквально -новообразование глюкозы). Глюкоза вырабатывается из многих промежуточных продуктов окисления в том числе и из молочной кислоты. В результате, молочная кислота из токсичного продукта превращается в глюкозу, так необходимую организму при больших физических нагрузках. Помимо молочной кислоты организм может синтезировать глюкозу из пировиноградной кислоты, аминокислот, глицерина, жирных кислот и др.

       Где происходит глюконеогенез? В основном в печени. Именно там синтезируются короткоживущие (всего в течение нескольких дней) ферменты, которые утилизируют самые разные вещества с одной целью - выработать достаточное количество глюкозы. При больших физических нагрузках в глюконегенезе начинают принимать участие почки, а при еще больших нагрузках, близких к предельным, - кишечник. Но роль почек и кишечника носит вспомогательный характер. Основная роль принадлежит, все же, печени.

       В нормальном, здоровом организме 50% всей молочной кислоты утилизируется печенью, превращаясь в глюкозу. При интенсивной мышечной работе умеренный распад белковых молекул сопровождается выходом аминокислот в кровь и их утилизацией в процесс глюконеогенеза, образованием той же глюкозы. Особенно хорошо утилизируются такие аминокислоты, как аланин (в печени) и глютаминовая кислота ( в кишечнике).

       От чего зависит "мощность" глюконеогенеза, основного механизма, "избавляющего" нас от молочной кислоты? От того, насколько интенсивно печень и другие органы синтезируют ферменты глюконеогенеза.

       Для нормального синтеза ферментов глюконеогенеза необходимо:

       во-первых, здоровая печень. Достаточно назначить любой препарат, улучшающий работу печени, как сразу же происходит повышение общей работоспособности. Это подтвердит вам любой практикующий врач.

       Во-вторых, необходима определенная активизация симпатико-адреналовой системы и достаточное содержание в крови глюкокортикоидных гормонов. Во время интенсивных тренировок происходит сильная активизация симпатико-адреналовой системы и массированный выброс в кровь глюкокортикоидов. Глюкокортикоиды оказывают катаболическое действие на все органы и ткани за исключением печени. В печени под влиянием глюкокортикоидов, наоборот, усиливается анаболизм и происходит быстрый синтез ферментов глюконеогенеза. В процессе тренировки под влиянием глюкокортикоидов происходит умеренный рабочий распад мышечной и жировой тканей. Продукты этого распада утилизируются печенью с образованием глюкозы.

       В-третьих, только регулярные физические тренировки могут быть основой нарастания мощности глюконеогенеза. Глюконеогенез, как и любая другая функция организма, поддается тренировке. Если у нетренированного человека мощность глюконеогенеза при физической работе может возрастать в 5 раз, то у квалифицированного спортсмена мощность глюконеогенеза может возрастать в 20 раз и более. В организме высококвалифицированных спортсменов глюконеогенез развит настолько хорошо, что его мощность нарастает прямо пропорционально нарастанию количества молочной кислоты в крови.

       Молочная кислота, образующаяся в мышцах, недостаточно хорошо проникает в кровь и плохо утилизируется в процессе глюконеогенеза. В этом случае организм приспосабливается к работе путем уменьшения количества образующейся молочной кислоты. У высококвалифицированных атлетов посттренировочное количество молочной кислоты непосредственно в мышечной ткани более чем в 2 раза ниже, чем у атлетов низкой квалификации
( продолжение следует ).


 

 
© FBFR 1998-2001гг.
 

 Library В библиотеку